A Minor New Diterpenoid Alkaloids from the Roots of *Delphinium* Souliei Franch

Lan HE¹, Yuan Jiang PAN²*, Bo Gang LI³, Yao Zu CHEN²

¹Department of Chemistry, Beijing Normal University, Beijing, 100085 ²Department of Chemistry, Zhejiang University, Hangzhou 310027 ³The Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

Abstract: A minor new diterpenoid alkaloid, soulidine, was isolated from the roots of *Delphinium Souliei* Franch, its structure was established on the basis of spectral evidences.

Keyword: Delphinium souliei, new deterpenoid alkaloid, soulidine, spectral data.

In our previous papers¹⁻³, we have reported the isolation and elucidation of a series of new diterpenoid alkaloids from the aerial part of *Delphinium souliei* Franch. In this study, phytochemical investigations on the constituents of the roots of this plant have led to the isolation of a minor new diterpenoid alkaloid soulidine.

Soulidine (4mg) was obtained as colorless crystals, mp: 90~91 °C (from ethanol), $[\alpha]_D^{24}$ +35.0 (c=0.2, CHCl₃). Its molecular formula C₂₇H₄₁NO₈ was derived from HREIMS (M⁺: 507.2825, calc. 507.2821). Twenty seven signals in ¹³CNMR(DEPT) were recognized (5xC, 9xCH, 7xCH₂ and 6xCH₃). The ¹HNMR spectrum (400MHz) exhibited the following signals for the protons of 7, 8-methylenedioxy group at δ 5.07 and 5.11 (each 1H, s) and two signals for the protons of four methoxy groups at $\delta 3.46$ (9H, s,) and 3.33 (3H, s). The signal at δ 2.10 (3H, s) in the ¹HNMR, the signals at δ 169.7 (s) and 21.5 (q) and the absorption at 1737cm⁻¹ in IR showed the presence of an acetoxy group in the molecule, No signal in NMR for N-CH₂CH₃ and the singlet at δ 2.10 (3H) indicated the existence of a N-CH₃ in the molecule, thus this compound could be elucidated as C_{19} - diterpenoid alkaloid with of 7, 8-methylenedioxy skeleton⁴; Seven oxygenated C-atoms in this molecule appear at δ 77.4 (d), 78.1 (t), 81.5 (d), 81.6 (d), 84.3 (s), 84.6 (d) and 90.5 (s). By comparing the ¹³CNMR of this compound with that of delcorine⁵, the four methoxy group could be assigned C-1, C-14, C-16 and C-18, the acetoxy group could be assigned C-6, because of the relative high-field shift of C-5 and C-7 in this compound (1.4 ppm for C-5 and 2.2 ppm for C-7 in comparison with that of delorine), the signal at δ 5.42 (1H, s) (HMQC experiment verified that the proton is attached to C-6) in ¹HNMR suggested that H-6 is α -oritented⁵. The data of ¹³CNMR (DEPT) appear in Table 1.

Lan HE et al.

On the basis of these spectral data, the structure of soulidine was established as that shown in **Figure 1**, and it is a new C_{19} -diterpenoid alkaloid.

 Table 1
 ¹³CNMR data of Soulidine(1) , delcorine(2)

C-atom	1	2	C-atom	1	2	
1	84.6, d	83.1	16	81.5, d	81.8	
2	26.3, t	26.4	17	61.7, d	63.9	
3	33.0, t	31.8	18	78.1, t	78.9	
4	37.3, s	38.1	19	56.4, t	53.7	
5	51.2, d	52.6	N-CH ₂		50.7	
6	77.4, d	78.9	CH_3		14.0	
7	90.5, s	92.7	-OCH2O-	93.5, t	92.9	
8	84.3, s	83.9	1- Ome	56.2, q	55.5	
9	49.1, d	48.1	14-OMe	57.7, q	57.8	
10	42.1, d	40.3	16-OMe	56.3, q	56.3	
11	53.1, s	50.2	18-OMe	61.7, q	59.6	
12	28.1, t	28.1	6-OCO	169.7, s		
13	37.3, d	37.9	CH3	21.5, q		
14	81.6, d	82.5	-NME	41.2, q		
15	34.8, t	33.3				

s, d, t and q refer to C, CH, CH₂ and CH₃

References

1. K. Zhang, L. He, X. Pan, Y.Z.Chen Planta Med., 1998, 64(6), 580.

- 2. L. He, Y. J. Pan, X. Pan, B. G. Li, Y. Z. Chen Chin. Chem. Lett. 1999, 5, 395.
- 3. L. He, X. Pan, B. G. Li, Y. Z. Chen Chin. Chem. Lett., 1998, 9(1), 57.
- 4. A. S. Narzullaev, M. S. Yunusov, S. Yu. Yunusov, Khim. Prir. Soedin.1973, 9, 497.
- 5. S. W. Pelletier, M. V. Naresh, D. D. Olivey, Can. J. Chem. 1980, 58, 1875.

Received 12 July 1999